Enhancing Laser Ablation ICP-MS Using Sector Field Technology

Introduction
Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) has developed over recent years to become a sophisticated tool for the multi-elemental and isotope ratio analysis of solid samples. Besides a true multi-elemental capability, independent of matrix, the major requirements for most geological laser applications in ICP-MS are the highest sensitivity and scan speed. Such demanding analytical pre-requisites often require the most sophisticated instrumentation, such as the Thermo Scientific ELEMENT 2.

This Application Report describes a variety of LA-ICP-MS applications from different scientists to provide a brief summary of the technique in their particular fields of interest. The contributions included are:
• Pb geochronology in zircons (M. Tiepolo et al.)
• Re and Os concentration measurements in molybdenite (I. Rodushkin et al.)
• High mass resolution for non-matrix dependent laser ablation analysis, the isotopic analysis of Pleistocene human remains and the multi-element analysis of fluid inclusions by LA-ICP-MS, (Ch. Latkoczy et al.).

In Situ Pb Geochronology of Zircons
Massimo Tiepolo
Email: tiepolo@crystal.unipv.it
web: http://www_crystal.unipv.it

The Pb geochronological capabilities of sector field LA–ICP–MS, based on the coupling of the Thermo Scientific ELEMENT and a 213 nm UV laser, have been tested on a series of zircons (Figure 1) ranging in age between 150 and 577 Ma (Figure 2):

- Geologically meaningful ages calculated from the ratios $^{206}\text{Pb}/^{238}\text{U}$, $^{207}\text{Pb}/^{235}\text{U}$ and $^{208}\text{Pb}/^{232}\text{Th}$ can be achieved down to 1 ppm of total Pb in zircon. Reliable $^{207}\text{Pb}/^{206}\text{Pb}$ ages can be only achieved in zircons with $> ~40$ ppm of total Pb.
- At a spatial resolution of 40 µm, the electrostatic scan mode (EScan) is more suitable and gives internal precision values on $^{206}\text{Pb}/^{238}\text{U}$, $^{207}\text{Pb}/^{235}\text{U}$ and $^{208}\text{Pb}/^{232}\text{Th}$ ages to better than 1.1% (for zircons with $> ~40$ ppm of total Pb).
- A spatial resolution of 20 µm can be used on relatively Pb-rich zircons even if the internal precision is about 1.5 times lower than with a spot size of 40 µm.
- Accuracy is not particularly sensitive to scan mode and is more influenced by the total Pb content of zircon, with values ranging between 1 and 5%.

Reference
Determination of Re and Os Concentrations in Molybdenite
Ilia Rodushkin
Email: ilia.rodushkin@analytica.se
web: http://www.analytica.se

The $^{187}\text{Re} - ^{187}\text{Os}$ geochronometer applied to molybdenite has been demonstrated to be remarkably robust, surviving intense rock deformation and high-grade thermal metamorphism. In molybdenite virtually all Os is produced by the radioactive decay of ^{187}Re to ^{187}Os. Successful dating by isotope dilution techniques is dependent on careful preparation of the mineral separate and on the appropriate choice of spikes. Both the Re and Os contents of molybdenites are highly variable, requiring pre-information for the preparation of the correct spike amounts. LA-ICP-MS (Figure 3) is therefore used as a rapid tool for Re and Os determination in molybdenite, since sample preparation for LA-ICP-MS consists of only the separation of the molybdenite, followed by grinding and pressing to form pellets.

External calibration with internal standardization using a matrix-matched standard has been found to be the best quantification approach for Re, providing results that are indistinguishable from data obtained by solution based ID-ICP-MS (within the limits of measurement precision). The accuracy of ^{187}Os quantification by LA-ICP-MS is poorer than compared to Re, as its determination requires the correction of a severe isobaric interference from ^{187}Re. Consequently, the determination only gives results that are more accurate for the older and higher in Os molybdenite samples.

Multi-Element Trace Analysis of Synthetic Mineral Materials
Christopher Latkoczy, Magne Ødegard and Detlef Günther
Email: Latkoczy@inorg.chem.ethz.ch
web: http://www.analytica.ethz.ch

The quantification of trace elements in synthetically prepared mineral standards used for microanalysis (rutile TiO$_2$, apatite Ca$_3$(PO$_4$)$_2$ and fluorite CaF$_2$) by LA-ICP-MS coupled to a 193 nm ArF - Excimer laser system was investigated. A commercially available standard silicate reference material (NIST SRM 612) was used as a one point calibration standard. Using such a non-matrix matched calibration procedure, a highly linear correlation between the measured and nominal concentrations for elements doped to the material was established (Figure 4).

References

Furthermore, the enhanced mass resolution capabilities of the instrument was used to identify possible interferences resulting from major sample elements (Figure 5a and 5b). The materials were analyzed using different laser spot sizes, ranging from 10 - 120 µm in order to study the elemental distribution of the elements in the mineral standards. At a spot size of 60 µm, relative standard deviations (RSDs) for 10 consecutive measurements were below 5% for the apatite, below 11% for the fluorite, and below 18% for the rutile (Figure 6). The accuracy for each element in the three synthetic mineral standards was within 15% for most elements in the apatite and fluorite materials, and up to 23% in the rutile. Such LA-ICP-MS studies proved to be very useful in order to characterize the homogeneity of synthetically prepared materials in the micrometer-scale.

References
Ødegård, M.; Skar, Ø.; Schiellerup, H.; Pearson, N.J., Preparation of a synthetic titanite glass calibration material for in situ microanalysis by direct fusion in graphite electrodes: A preliminary characterisation by EPMA and LA-ICP-MS, Geostandards and Geoanalytical Research, 2005, 29(2), 197-209.

Trace Element and Sr Isotopic Ratio Analysis of Pleistocene Human Teeth from the Altai Massif, Russia
Christopher Latkoczy, Bence Viola, Maria Teschler-Nicola, Horst Seidler, Thomas Prohaska, Beat Aeschlimann and Detlef Günther
Email: Latkoczy@inorg.chem.ethz.ch
web: http://www.analytica.ethz.ch

In the 1980s, human remains (seven teeth and postcranial fragments) were discovered in two caves in north-western Altai, Siberia. Morphologically and metrically, the Denisova and Okladnikov cave teeth have been compared to both Neanderthals and modern humans (Figures 7a and 7b).

Furthermore, we used an optimized fast-scan method to measure the isotope ratio of $^{87}\text{Sr}/^{86}\text{Sr}$ in dentine and enamel to study possible migration patterns (Figure 9 and Table 1).

Table 1: Results from the Sr isotopic analysis.
Our preliminary results showed that further work is necessary to assess the amount and pattern of intra-individual variations in multi-element and isotopic composition, as well any possible effect from the post-depositional environment. We could not reach fully conclusive results on individual associations, but our results do not support previous claims that the Okladnikov cave teeth originate from only two individuals. Strontium isotope ratios in the Okladnikov sample indicate within the measurement uncertainty that the individual did not migrate, at least not to regions with strongly different geological substrate. Further information on regional geology and isotopic composition will help to clarify this question.

References

Analysis of Fluid Inclusions Using Sector Field LA-ICP-MS
Christopher Latkoczy and Detlef Günther
Email: Latkoczy@inorg.chem.ethz.ch
web: http://www.analytica.ethz.ch

Microscopic fluid inclusions in minerals are the main source of information about the chemical composition of fluids associated with large-scale material transport in the Earth’s interior. Hydrothermal transport processes are responsible for the natural enrichment of metal resources in many ore deposits. For the multi-element analysis of the microscopic fluid inclusions (typically 5 - 50 µm in diameter), LA-ICP-MS has become one of the most promising techniques owing to the recent progress in laser optics design and the development of high-sensitivity, fast-scanning ICP mass spectrometers.

The latest improvement in the Thermo Scientific ELEMENT 2 scan speed allows magnetic jumps from the lowest mass analyzed, 7Li, to the highest mass, 238U, in only 90 ms. The jump back to the lowest mass is performed in < 50 ms.

The method developed for the analyses of 28 major, minor and trace elements, covering a concentration range of five orders of magnitude, results in a scan duration of 0.88 s and a duty cycle of 63% (Figure 9).

These analyses were carried out on single natural fluid inclusions (Figure 10) together with a number of experiments to optimize a controlled ablation technique and to test a calibration procedure.

References

Acknowledgements
Thermo Fisher Scientific wants to thank all authors for their contribution.

Legal Notices
©2006, 2007 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.